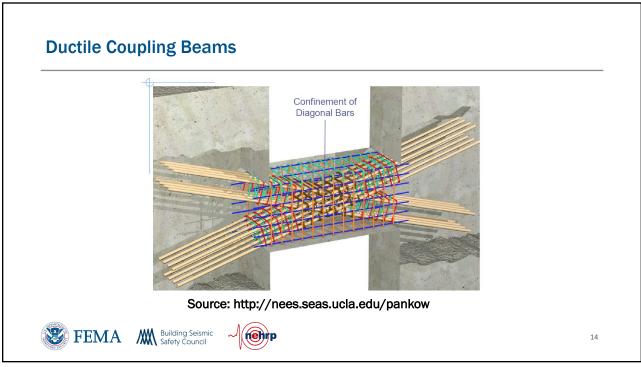
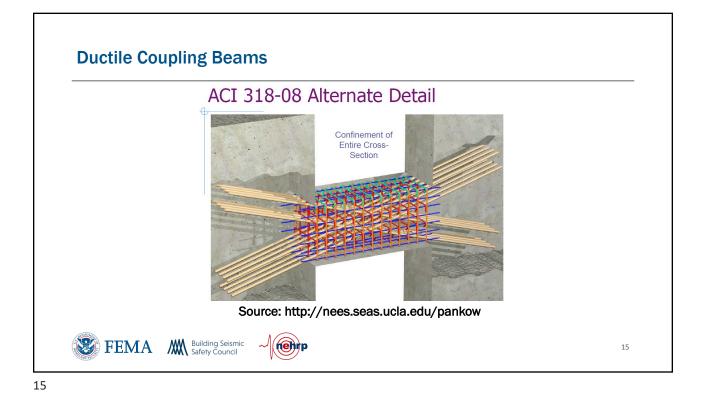
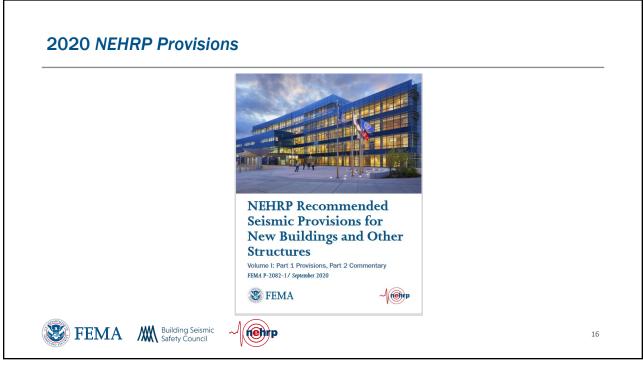
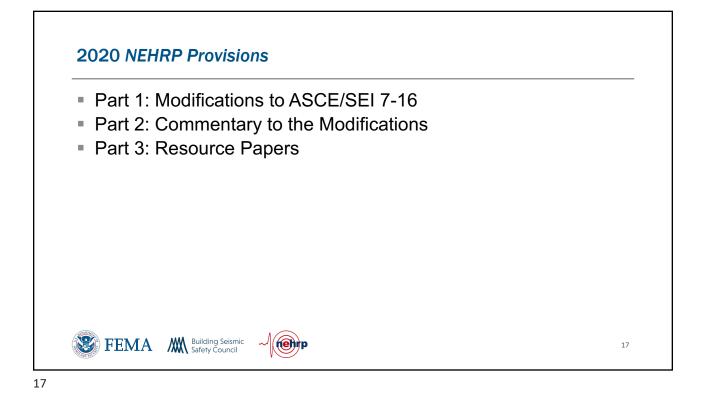
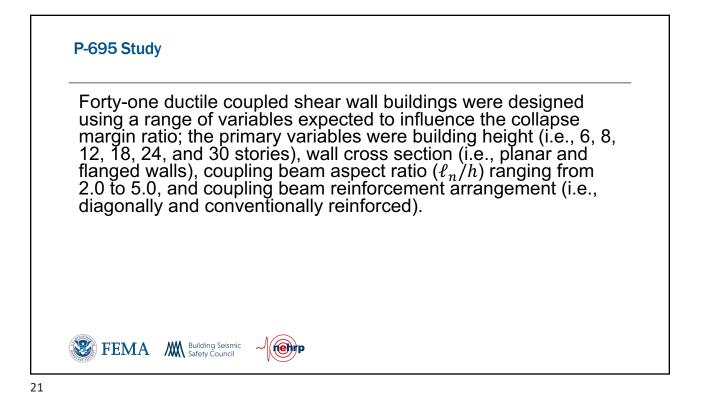

10

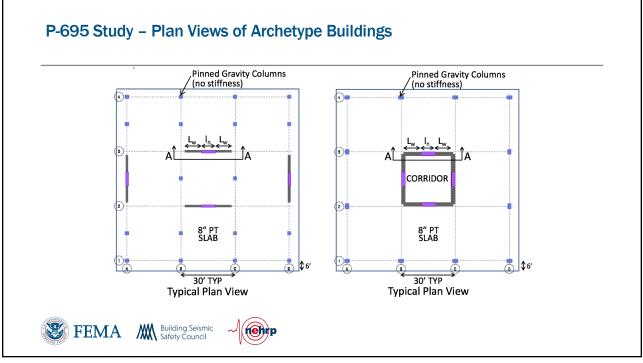


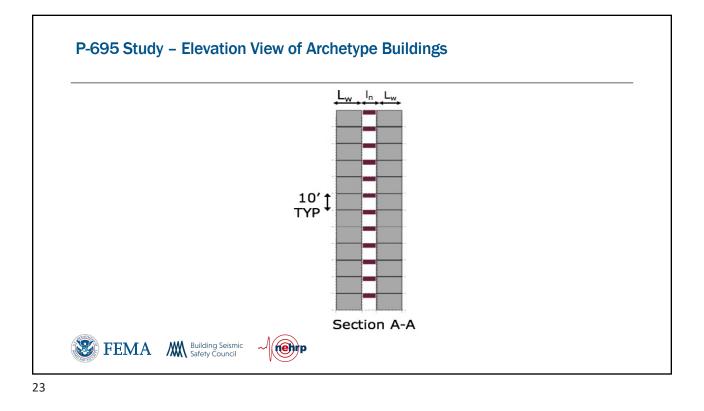



12

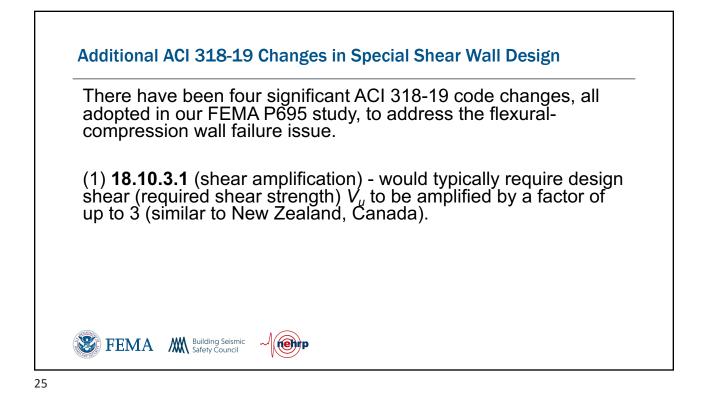

3/30/22

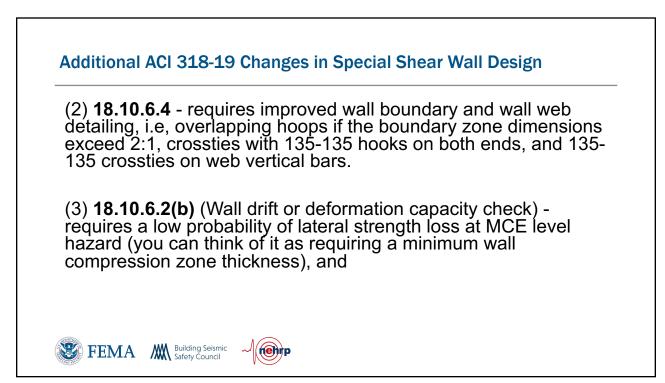

BSSC PUC Issue Team 4

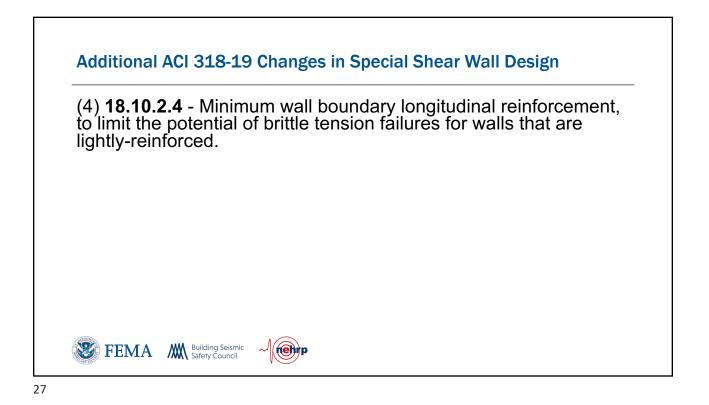

Jeffrey W. Berman, University of Washington, Seattle, WA Larry Fahnestock, University of Illinois, Urbana-Champaign, IL Joe Ferzli, Cary Kopczynski & Company, Bellevue, WA John Hooper, Magnusson Klemencic, Seattle, WA Dawn Lehman, University of Washington, Seattle, WA Phil Line, American Wood Council, Washington, D.C. Laura Lowes, University of Washington, Seattle, WA Rafael Sabelli, Walter P. Moore, San Francisco, CA John Wallace, University of California, Los Angeles, CA Amit Varma, Purdue University, West Lafayette, IN Jon-Paul Cardin, American Institute of Steel Construction, Coeur d'Alene, ID

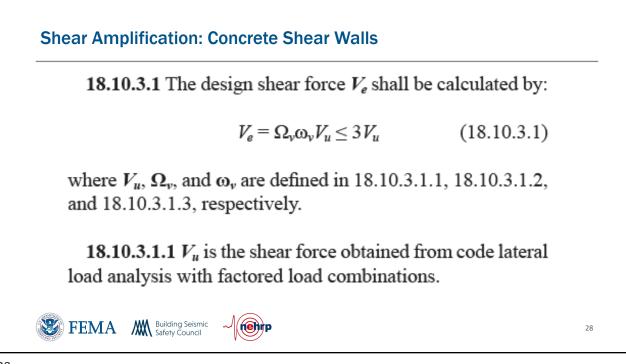


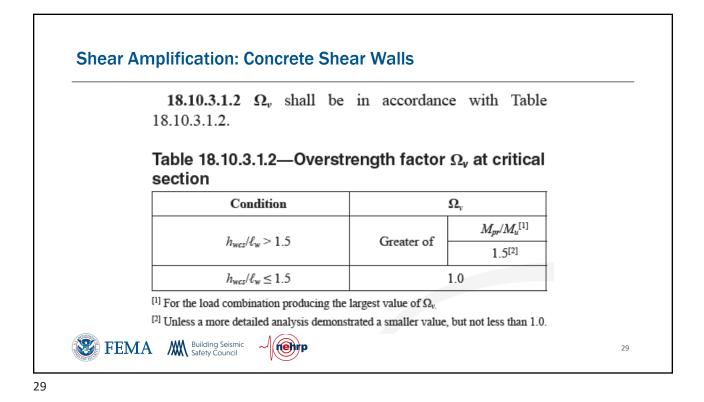
19

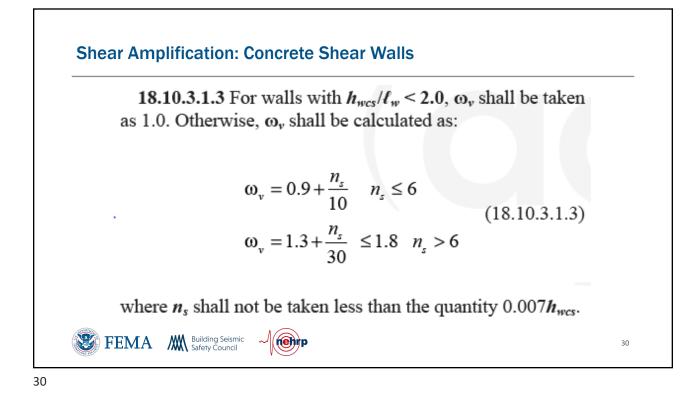

UCLA	UCLA Structural / Earthquake Engineering Research Laboratory	
	Durtile Reinforced Concrete Coupled Walls: FEMA P695 Study Final Report	
	Negin A. Tauberg, Ph.D. Candidate, UCLA Krittipus Kolexvari, Assistant Professor, CSU Fulletton John W. Walkee, Professor and Durettor, UCLA University of California, Los Angeles Department of Civil and Environmental Engineering 5731C Boether Hull	
	5/31C Boetter Hall Los Angeles, California, 90095-1593	
UCLA SEERL 2019/01 July 2019	Project Sponsor:	








P-695 Study - Design Parameters The designs were for Risk Category II structures with an importance factor *I_e* = 1.0. It incorporated provisions of ASCE/SEI 7-16 and ACI 318-19 as well as the seismic design parameters specified in FEMA P695 (importance factor, redundancy factor, and site class and spectral values). The redundancy factor ρ was taken equal to 1.0. The seismic bazerd *D_{max}* as specified in FEMA P695. S_S = 1.5g F_a = 1.0 S_{DS} = 1.00 g S₁ = 0.6g F_v = 1.5 S_{D1} = 0.60g

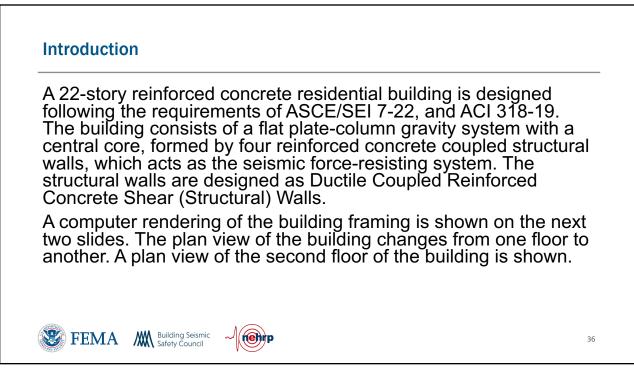


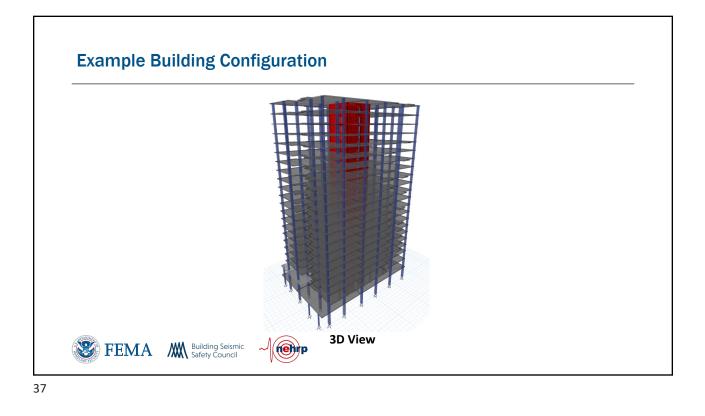
ASCE/SEI 7-22

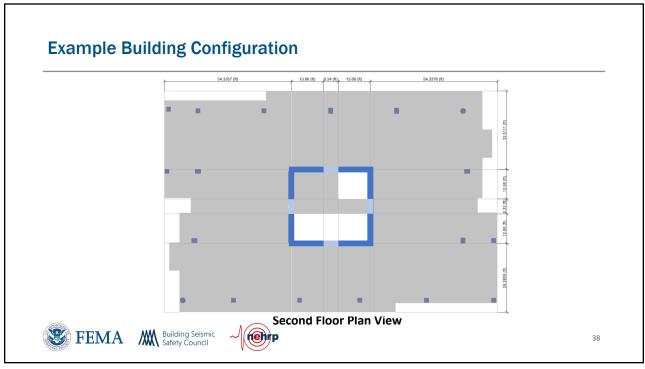
Basic Seismic Force-resisting	Detailing Reference	R	Ω_0	Са				<u> </u>	ing Height ign Category		
System	Section		0		В	С	D	Е	F		
A. Bearing Wall System											
1. Special reinforced concrete shear walls	14.2	5	2 ¹ / ₂	5	NL	NL	160	160	100		
2. Ductile Coupled reinforced concrete shear walls ^q	<u>14.2</u>	<u>8</u>	<u>2¹/2</u>	<u>8</u>	<u>NL</u>	<u>NL</u>	<u>160</u>	<u>160</u>	<u>100</u>		
3. Ordinary reinforced concrete shear walls	14.2	4	2 ¹ / ₂	4	NL	NL	NP	NP	NP		
^q Structural height, h _n , shall not be	less than 60	ft (18.3	<u>3 m).</u>								
Minimum height is intended to en the coupling beams. FEMA M Building Seism Safety Council		e degr	ee of co	upling	and signif	ficant ene	rgy dissip	ation prov	vided by		


31

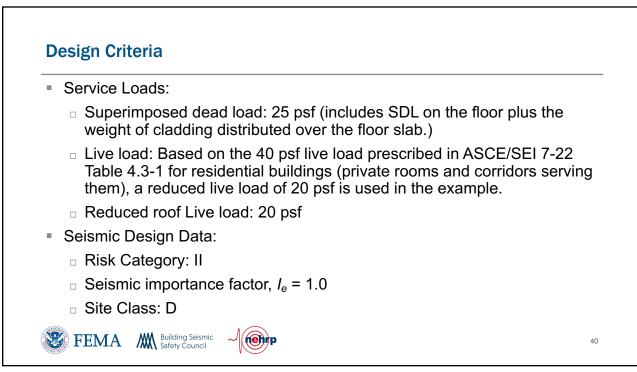
Earthquake Force-Resisting Structural Systems of Concrete – ASCE/SEI 7-22

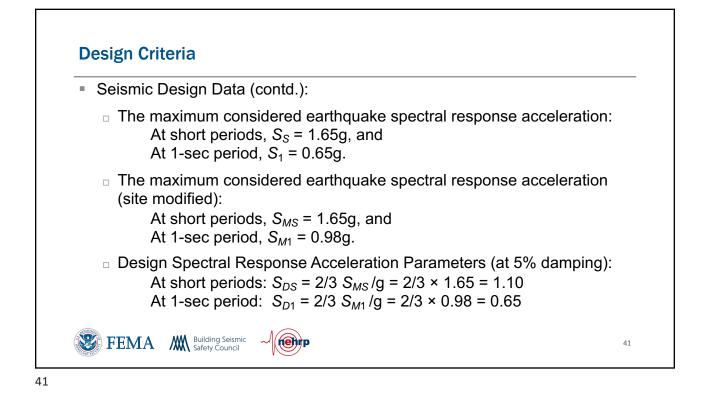

Basic Seismic Force-resisting	Detailing Reference	R	Ω_0	Cd				Building H Design C	
System	Section				В	С	D	E	F
B. Building Frame System									
4. Special reinforced concrete shear walls	14.2	6	2 ¹ / ₂	5	NL	NL	160	160	100
5. Ductile Coupled reinforced concrete shear walls ^q	<u>14.2</u>	<u>8</u>	<u>2¹/₂</u>	<u>8</u>	<u>NL</u>	<u>NL</u>	<u>160</u>	<u>160</u>	<u>100</u>
6. Ordinary reinforced concrete shear walls	14.2	5	2 ¹ / ₂	4 ¹ / ₂	NL	NL	NP	NP	NP
<u>a Structural height, <i>h_n</i>, shall not be</u>	e less than 60	<u>ft (18.3</u>	<u>3 m).</u>						
FEMA Muilding Seisn Safety Council		p							32

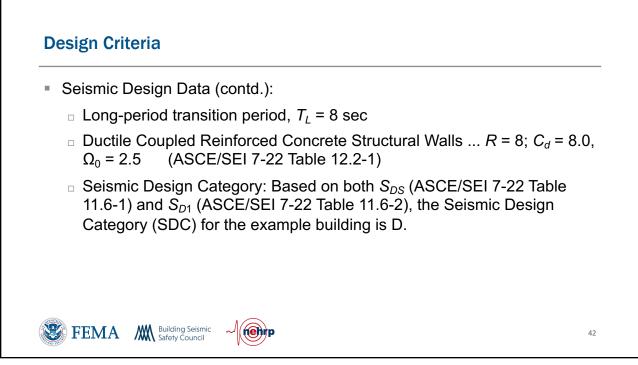

Earthquake Force-Resisting Structural Systems of Concrete – ASCE/SEI 7-22


Basic Seismic Force-resisting	Detailing Reference	R	Ω_0	Cd				Building F Design C	
System	Section				В	С	D	E	F
D. Dual Systems with Special Mo	oment Frame	s							
3. Special reinforced concrete shear walls	14.2	7	2 ¹ / ₂	5 ¹ / ₂	NL	NL	NL	NL	NL
4. Ductile Coupled reinforced concrete shear walls ^q	<u>14.2</u>	<u>8</u>	<u>2¹/2</u>	<u>8</u>	<u>NL</u>	<u>NL</u>	<u>NL</u>	<u>NL</u>	<u>NL</u>
5. Ordinary reinforced concrete shear walls	14.2	6	2 ¹ / ₂	5	NL	NL	NP	NP	NP
^q Structural height, <i>h_n</i> , shall not be	less than 60	ft (18.3	<u>3 m).</u>						
FEMA M Building Seismi Safety Council		•							33

Member Sizes:


- Shear walls: 26 in. thick
- Slabs (2nd and 3rd floors): 8 in. thick (4th floor and higher): 7.5 in. thick
- Gravity columns: Various sizes
- Material properties:
 - □ Concrete (used in structural walls and columns): f_c = 8000 psi (all floors)
 - □ Concrete (used in slabs): f_c = 6000 psi (floors)


~/(nehrp


- □ All members are constructed of normal weight concrete (w_c = 150 pcf)
- □ Reinforcement (used in all structural members): f_y = 60,000 psi

FEMA Multing Seismic Safety Council

39

Design Procedure

Although ASCE/SEI 7-22 permits the Equivalent Lateral Force procedure to be used in all situations, the modal response spectrum analysis (MRSA) procedure (ASCE/SEI 7-22 Section 12.9.1) is used in this example. However, as part of the MRSA procedure, base shear is also determined using Equivalent Lateral Force (ELF) procedure. This is because ASCE/SEI 7-22 requires that the base shear obtained from MRSA be scaled up to match the ELF base shear.

The building was modeled in ETABS 2016, and the total seismic weight was obtained from the program as **43,099 kips**.

43

Modal Response Spectrum Analysis

A 3-D modal response spectrum analysis (MRSA) is performed using ETABS (v2016).

- Semi-rigid diaphragms are assigned at each level.
- The effective cracked member stiffnesses used in the analyses are as follows:
 - \Box Columns and shear walls, $I_{eff} = 0.7I_g$
 - □ Coupling beams, $I_{eff} = 0.25I_g$
 - Gravity columns, $I_{eff} = 0.1I_g$ (with pinned connections at the base)

nehrp

Adequate number of modes are considered in the modal analysis to incorporate 100% of the modal mass in each of x- and y-directions. Also, appropriate scale factors are applied to the base shears calculated in the xand y-directions to amplify them to those calculated in the ELF procedure.

FEMA Building Seismic Safety Council 43

Story	Elevation (ft)	X-Dir (kip)	Y-Dir (kip)	Story	Elevation (ft)	X-Dir (kip)	Y-Dir (kip)
L23	234.25	195.35	195.35	L12	124.25	80.68	80.68
L22	224.25	206.00	206.00	L11	114.25	71.00	71.00
L21	214.25	192.84	192.84	L10	104.25	61.10	61.10
L20	204.25	177.63	177.63	L09	94.25	52.34	52.34
L19	194.25	165.00	165.00	L08	84.25	43.80	43.80
L18	184.25	150.81	150.81	L07	74.25	35.84	35.84
L17	174.25	138.90	138.90	L06	64.25	28.48	28.48
L16	164.25	125.66	125.66	L05	54.25	21.77	21.77
L15	154.25	114.43	114.43	L04	44.25	16.22	16.22
L14	144.25	102.24	102.24	L03	31.25	12.95	12.95
L13	134.25	91.78	91.78	L02	16.25	3.78	3.78
FEM	A Building	Seismic 🗸	erp				

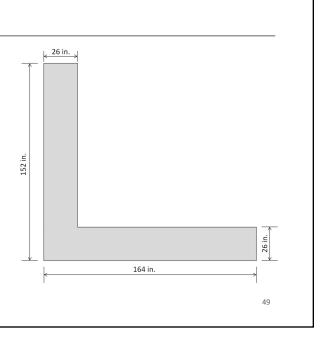
Story	Story Ht. (ft)	δ _{xe} (in.)	Cd	δ _x (in.)	Relative Drift (%)	Story	Story Ht. (ft)	δ _{xe} (in.)	Cd	δ _x (in.)	Relative Drift (%)
L23	10	3.36	8	26.84	1.00	L12	10	1.59	8	12.70	1.10
L22	10	3.21	8	25.65	1.02	L11	10	1.42	8	11.38	1.09
L21	10	3.05	8	24.43	1.03	L10	10	1.26	8	10.07	1.08
L20	10	2.90	8	23.18	1.05	L09	10	1.10	8	8.77	1.06
L19	10	2.74	8	21.92	1.07	L08	10	0.94	8	7.50	1.04
L18	10	2.58	8	20.64	1.08	L07	10	0.78	8	6.25	1.00
L17	10	2.42	8	19.33	1.10	L06	10	0.63	8	5.06	0.95
L16	10	2.25	8	18.02	1.10	L05	10	0.49	8	3.91	0.89
L15	10	2.09	8	16.69	1.11	L04	13	0.36	8	2.85	0.80
L14	10	1.92	8	15.36	1.11	L03	15	0.20	8	1.60	0.59
L13	10	1.75	8	14.03	1.11	L02	16.25	0.07	8	0.55	0.28

Story	Story Ht. (ft)	δ _{xe} (in.)	Cd	δ _x (in.)	Relative Drift (%)	Story	Story Ht. (ft)	δ _{xe} (in.)	Cd	δ _x (in.)	Relative Drift (%)
L23	10	3.64	8	29.11	1.07	L12	10	1.74	8	13.91	1.19
L22	10	3.48	8	27.83	1.09	L11	10	1.56	8	12.48	1.18
L21	10	3.32	8	26.52	1.11	L10	10	1.38	8	11.06	1.17
L20	10	3.15	8	25.19	1.13	L09	10	1.21	8	9.65	1.15
L19	10	2.98	8	23.83	1.15	L08	10	1.03	8	8.27	1.13
L18	10	2.81	8	22.45	1.17	L07	10	0.86	8	6.92	1.09
L17	10	2.63	8	21.05	1.18	L06	10	0.70	8	5.60	1.04
L16	10	2.45	8	19.63	1.19	L05	10	0.54	8	4.35	0.98
L15	10	2.28	8	18.21	1.19	L04	13	0.40	8	3.18	0.87
L14	10	2.10	8	16.77	1.20	L03	15	0.23	8	1.82	0.67
L13	10	1.92	8	15.34	1.19	L02	16.25	0.08	8	0.62	0.32

L

Story Drift Limitation

According to ASCE/SEI 7-22 Section 12.12.1, the calculated relative story drift at any story must not exceed 2% (ASCE/SEI 7-22 Table 12.12-1 for all other buildings in Risk Category I and II). As can be seen from the previous slide, this is satisfied in all stories.



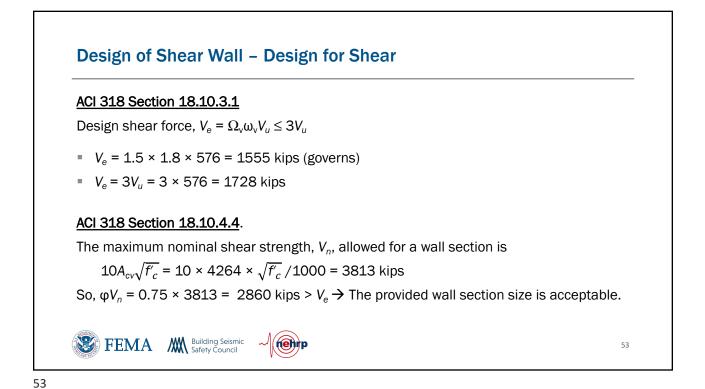
Design of Shear Wall

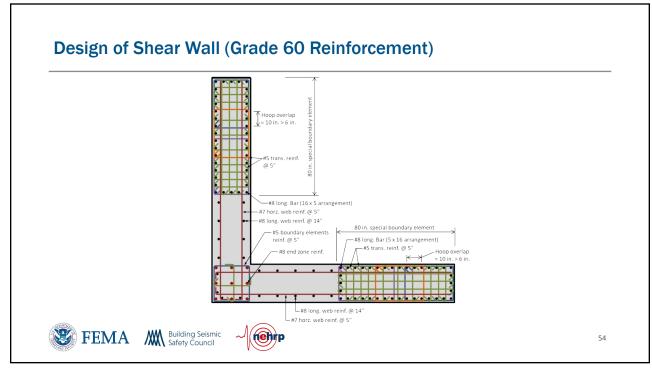
FEMA Mulding Seismic Safety Council

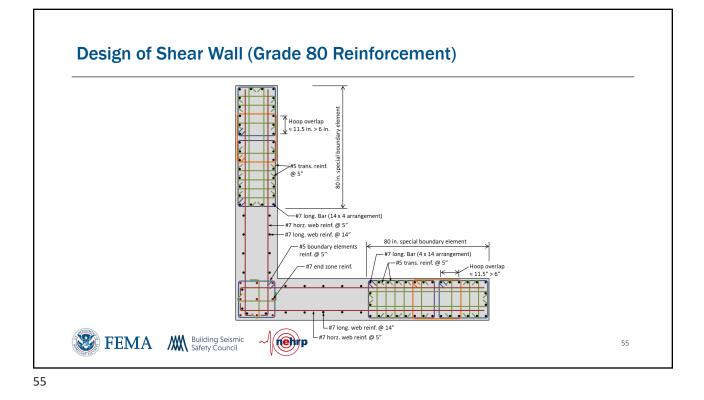
- The design of one of the shear walls at the base of the structure is illustrated in this example in accordance the provisions of ACI 318-19.
- One L-shaped segment of the shear wall core is designed as two flanged walls.
- Orthogonal combination of seismic forces is NOT required as axial loads on the wall from seismic forces are less than 20% of the design axial strength.

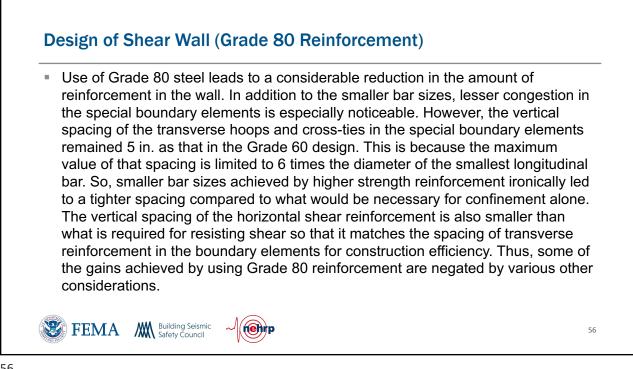
~ (**fehr**p

49

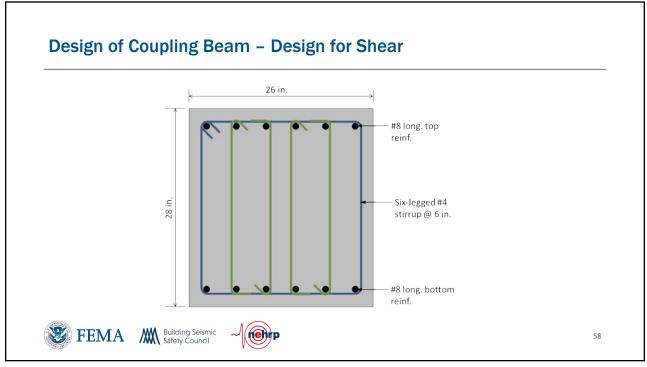

Design of Shear Wall – Design Loads


Seismic forces acting along x-axis are considered in this design example. The design calculations for the seismic forces acting along the y-axis are similar and are not shown. However, the final wall configuration will incorporate effects of seismic forces in both directions.


	Load Combinations	Axial Force, P _u (kips)	Shear Force, V _u (kips)	Bending Moment, <i>M_u</i> (ft-kips)
1	1.4D	6335	0	0
2	1.2D + 1.6L + 0.5Lr	6071	0	0
3	$(1.2+0.2S_{DS})D + \rho Q_E + 0.5L$	10,015	576	24,976
4	$(0.9D-0.2S_{DS}D)+\rho Q_E$	6460	573	24,585
5	(0.9D - 0.2S _{DS} D) - ρQ _E	-378	573	24,585
FE	MA Building Seismic	ehrp		



Design of Shear Wall – Design for Shear ACI 318 Section 18.10.3.1 Design shear force, $V_e = \Omega_v \omega_v V_{\mu} \le 3V_{\mu}$ For walls with $h_{wcs}/\ell_w > 1.5$, Ω_v is the greater of M_{pr}/M_u and 1.5. The probable moment strength M_{or} is unknown at this stage. So, it is assumed that Ω_{v} = 1.5. This may very well prove to be unconservative. Once the flexural reinforcement has been provided, this will be verified or corrected, if necessary For walls with $h_{wcs}/\ell_w \ge 2.0$ and the number of stories above critical section, $n_s > 1$ 6, $\omega_v = 1.3 + n_s/30 \le 1.8$ □ In this example, $n_s = 22$. n_s cannot be taken less than the quantity 0.007 h_{wcs} (= 19.68), which is satisfied. $\Box \omega_v = 1.3 + 22/30 = 2.03 \rightarrow \omega_v = 1.8$ FEMA Mulding Seismic Safety Council 52 52


Design of Coupling Beam

A coupling beam oriented along the y-axis of the building at the second floor level is selected for this example. The dimensions of the beam are given below:

- Clear span of the beam, $\ell_n = 76$ in. (6.33 ft)
- Height of the beam, h = 28 in. (2.33 ft)
- Width of the beam, $b_w = 26$ in. (2.17 ft)
- $\ell_n/h = 76/28 = 2.7$

Since $2 < \ell_n/h < 4$, per ACI 318 Section 18.10.7.3, this beam can be designed as a deep coupling beam using two intersecting groups of diagonally placed bars, or as a special moment frame flexural member in accordance with the ACI 318 Sections 18.6.3 through 18.6.5. The second option is adopted for this example. Building Seismic Safety Council (**nehr**p 57

57

